Численное решение дифференциальных уравнений. Численное решение обыкновенных дифференциальных уравнений Метод эйлера для решения дифференциальных уравнений алгоритм

Лабораторная работа 1

Численные методы решения

обыкновенных дифференциальных уравнений (4 часа)

При решении многих физических и геометрических задач приходится искать неизвестную функцию по данному соотношению между неизвестной функцией, ее производными и независимыми переменными. Такое соотношение называется дифференциальным уравнением , а отыскание функции, удовлетворяющей дифференциальному уравнению, называется решением дифференциального уравнения.

Обыкновенным дифференциальным уравнением называется равенство

, (1)

в котором

- независимая переменная, изменяющаяся в некотором отрезке , а - неизвестная функция y ( x ) и ее первые n производные. называется порядком уравнения .

Задача заключается в нахождении функции y, удовлетворяющей равенству (1). Более того, не оговаривая это отдельно, будем предполагать, что искомое решение обладает той или иной степенью гладкости, необходимой для построения и «законного» применения того или иного метода.

Различают два типа обыкновенных дифференциальных уравнений

Уравнения без начальных условий

Уравнения с начальными условиями.

Уравнения без начальных условий - это уравнение вида (1).

Уравнение с начальными условиями - это уравнение вида (1), в котором требуется найти такую функцию

, которая при некотором удовлетворяет следующим условиям: ,

т.е. в точке

функция и ее первые производных принимают наперед заданные значения.

Задачи Коши

При изучении способов решения дифференциальных уравнений приближенными методами основной задачей считается задача Коши.

Рассмотрим наиболее популярный метод решения задачи Коши – метод Рунге-Кутта. Этот метод позволяет строить формулы расчета приближенного решения практически любого порядка точности.

Выведем формулы метода Рунге-Кутта второго порядка точности. Для этого решение представим куском ряда Тейлора, отбрасывая члены с порядком выше второго. Тогда приближенное значение искомой функции в точке x 1 можно записать в виде:

(2)

Вторую производную y "( x 0 ) можно выразить через производную функции f ( x , y ) , однако в методе Рунге-Кутта вместо производной используют разность

соответственно подбирая значения параметров

Тогда (2) можно переписать в виде:

y 1 = y 0 + h [ β f ( x 0 , y 0 ) + α f ( x 0 + γh , y 0 + δh )], (3)

где α , β , γ и δ – некоторые параметры.

Рассматривая правую часть (3) как функцию аргумента h , разложим ее по степеням h :

y 1 = y 0 +( α + β ) h f ( x 0 , y 0 ) + αh 2 [ γ f x ( x 0 , y 0 ) + δ f y ( x 0 , y 0 )],

и выберем параметры α , β , γ и δ так, чтобы это разложение было близко к (2). Отсюда следует, что

α + β =1, αγ =0,5, α δ =0,5 f ( x 0 , y 0 ).

С помощью этих уравнений выразим β , γ и δ через параметры α , получим

y 1 = y 0 + h [(1 - α ) f ( x 0 , y 0 ) + α f ( x 0 +, y 0 + f ( x 0 , y 0 )], (4)

0 < α ≤ 1.

Теперь, если вместо (x 0 , y 0 ) в (4) подставить (x 1 , y 1 ), получим формулу для вычисления y 2 приближенного значения искомой функции в точке x 2 .

В общем случае метод Рунге-Кутта применяется на произвольном разбиении отрезка [ x 0 , X ] на n частей, т.е. с переменным шагом

x 0 , x 1 , …,x n ; h i = x i+1 – x i , x n = X. (5)

Параметры α выбирают равными 1 или 0,5. Запишем окончательно расчетные формулы метода Рунге-Кутта второго порядка с переменным шагом для α =1:

y i+1 =y i +h i f(x i + , y i + f(x i , y i)), (6.1)

i = 0, 1,…, n -1.

и α =0,5:

y i+1 =y i + , (6.2)

i = 0, 1,…, n -1.

Наиболее употребляемые формулы метода Рунге-Кутта – формулы четвертого порядка точности:

y i+1 =y i + (k 1 + 2k 2 + 2k 3 + k 4),

k 1 =f(x i , y i), k 2 = f(x i + , y i + k 1), (7)

k 3 = f(x i + , y i + k 2), k 4 = f(x i +h, y i +hk 3).

Для метода Рунге-Кутта применимо правило Рунге для оценки погрешности. Пусть y ( x ; h ) – приближенное значение решения в точке x , полученное по формулам (6.1), (6.2) или (7) с шагом h , а p порядок точности соответствующей формулы. Тогда погрешность R ( h ) значения y ( x ; h ) можно оценить, используя приближенное значение y ( x ; 2 h ) решения в точке x , полученное с шагом 2 h :

(8)

где p =2 для формул (6.1) и (6.2) и p =4 для (7).

Обыкновенными дифференциальными уравнениями называются такие уравнения, которые содержат одну или несколько производных от искомой функции y=y (x). Их можно записать в виде

Где х - независимая переменная.

Наивысший порядок n входящей в уравнение производной называется порядком дифференциального уравнения.

Методы решения обыкновенных дифференциальных уравнений можно разбить на следующие группы: графические, аналитические, приближенные и численные.

Графические методы используют геометрические построения.

Аналитические методы встречаются в курсе дифференциальных уравнений. Для уравнений первого порядка (с разделяющимися переменными, однородных, линейных и др.), а также для некоторых типов уравнений высших порядков (например, линейных с постоянными коэффициентами) удается получить решения в виде формул путем аналитических преобразований.

Приближенные методы используют различные упрощения самих уравнений путем обоснованного отбрасывания некоторых содержащихся в них членов, а также специальным выбором классов искомых функций.

Численные методы решения дифференциальных уравнений в настоящее время являются основным инструментом при исследовании научно-технических задач, описываемых дифференциальными уравнениями. При этом необходимо подчеркнуть, что данные методы особенно эффективны в сочетании с использованием современных компьютеров.

Простейшим численным методом решения задачи Коши для ОДУ является метод Эйлера. Рассмотрим уравнение в окрестностях узлов (i=1,2,3,…) и заменим в левой части производную правой разностью. При этом значения функции узлах заменим значениями сеточной функции:

Полученная аппроксимация ДУ имеет первый порядок, поскольку при замене на допускается погрешность.

Заметим, что из уравнения следует

Поэтому представляет собой приближенное нахождение значение функции в точке при помощи разложения в ряд Тейлора с отбрасыванием членов второго и более высоких порядков. Другими словами, приращение функции полагается равным её дифференциалу.

Полагая i=0, с помощью соотношения находим з значение сеточной функции при:

Требуемое здесь значение задано начальным условием, т.е.

Аналогично могут быть найдены значения сеточной функции в других узлах:

Построенный алгоритм называется методом Эйлера

Рисунок - 19 Метод Эйлера

Геометрическая интерпретация метода Эйлера дана на рисунке. Изображены первые два шага, т.е. проиллюстрировано вычисление сеточной функции в точках. Интегральные кривые 0,1,2 описывают точные решения уравнения. При этом кривая 0 соответствует точному решению задачи Коши, так как она проходит через начальную точку А (x 0 ,y 0). Точки B,C получены в результате численного решения задачи Коши методом Эйлера. Их отклонения от кривой 0 характеризуют погрешность метода. При выполнении каждого шага мы фактически попадаем на другую интегральную кривую. Отрезок АВ - отрезок касательной к кривой 0 в точке А, ее наклон характеризуется значением производной. Погрешность появляется потому, что приращение значения функции при переходе от х 0 к х 1 заменяется приращением ординаты касательной к кривой 0 в точке А. Касательная ВС уже проводится к другой интегральной кривой 1. таким образом, погрешность метода Эйлера приводит к тому, что на каждом шаге приближенное решение переходит на другую интегральную кривую.

Введение

При решении научных и инженерно-технических задач часто бывает необходимо математически описать какую-либо динамическую систему. Лучше всего это делать в виде дифференциальных уравнений (ДУ ) или системы дифференциальных уравнений. Наиболее часто они такая задача возникает при решении проблем, связанных с моделированием кинетики химических реакций и различных явлений переноса (тепла, массы, импульса) – теплообмена, перемешивания, сушки, адсорбции, при описании движения макро- и микрочастиц.

В ряде случаев дифференциальное уравнение можно преобразовать к виду, в котором старшая производная выражена в явном виде. Такая форма записи называется уравнением, разрешенным относительно старшей производной (при этом в правой части уравнения старшая производная отсутствует):

Решением обыкновенного дифференциального уравнения называется такая функция y(x), которая при любых х удовлетворяет этому уравнению в определенном конечном или бесконечном интервале. Процесс решения дифференциального уравнения называют интегрированием дифференциального уравнения.

Исторически первым и наиболее простым способом численного решения задачи Коши дляОДУ первого порядка является метод Эйлера. В его основе лежит аппроксимация производной отношением конечных приращений зависимой (y) и независимой (x) переменных между узлами равномерной сетки:

где y i+1 это искомое значение функции в точке x i+1 .

Точность метода Эйлера можно повысить, если воспользоваться для аппроксимации интеграла более точной формулой интегрирования –формулой трапеций .

Данная формула оказывается неявной относительно y i+1 (это значение есть и в левой и в правой части выражения), то есть является уравнением относительно y i+1 , решать которое можно, например, численно, применяя какой-либо итерационный метод (в таком виде его можно рассматривать как итерационную формула метода простой итерации).

Состав курсовой работы: Курсовая работа состоит из трех частей. В первой части краткое описание методов. Во второй части постановка и решение задачи. В третьей части – программная реализация на языке ЭВМ

Цель курсовой работы: изучить два метода решения дифференциальных уравнений-метод Эйлера-Коши и усовершенствованный методЭйлера.

1. Теоретическая часть

Численное дифференцирование

Дифференциальным называется уравнение, содержащее один или несколько производных. В зависимости от количества не зависимых переменных, дифференциальные уравнения делятся на две категории.

    Обыкновенные дифференциальные уравнения (ОДУ)

    Дифференциальные уравнения в частных производных.

Обыкновенными дифференциальными уравнениями называются такие уравнения, которые содержат одну или несколько производных от искомой функции . Их можно записать виде

независимая переменная

Наивысший порядок , входящий в уравнение (1) называется порядком дифференциального уравнения.

Простейшим (линейным) ОДУ является уравнение (1) порядка разрешенное относительно производной

Решением дифференциального уравнения (1) называется всякая функция,которая после ее подстановки в уравнение обращает его в тождество.

Основная задача, связанная с линейной ОДУ известно как задача Каши:

Найти решение уравнения (2) в виде функции удовлетворяющий начальному условию (3)

Геометрически это означает, что требуется найти интегральную кривую, проходящую через точку ) при выполнение равенства (2).

Численный с точки зрения задачи Каши означает: требуется построить таблицу значений функции удовлетворяющий уравнение (2) и начальное условие (3) на отрезке с некоторым шагом . Обычно считается, что то есть начальное условие задано в левом конце отрезка.

Простейшим из численных методов решения дифференциального уравнения является метод Эйлера. В его основе лежит идея графического построения решения дифференциального уравнения, однако этот метод дает одновременно и способ нахождения искомой функции в численной форме или таблицы.

Пусть дано уравнение (2) с начальным условием тоесть поставлена задача Каши. Решим вначале следующую задачу. Найти простейшим способом приближенное значение решения в некоторой точке где -достаточно малый шаг. Уравнение (2) совместно с начальным условием (3) задают направление касательной искомой интегральной кривой в точке с координатами

Уравнение касательной имеет вид

Двигаясь вдоль этой касательной, получим приближенное значение решения в точке :

Располагая приближенным решением в точке можно повторить описанную ранее процедуру: построить прямую проходящую через эту точку с угловым коэффициентом , и по ней найти приближенное значение решения в точке

. Заметим, что эта прямая не является касательной к реальной интегральной кривой, поскольку точка нам не доступна, однако если достаточно мало то получаемые приближенные будут близки к точным значениям решения.

Продолжая эту идею, построим систему равно отстоящих точек

Получение таблицы значений искомой функции

по методу Эйлера заключается в циклическом применение формулы

Рисунок 1. Графическая интерпретация метода Эйлера

Методы численного интегрирования дифференциальных уравнений, в которых решения получаются от одного узла к другому, называются пошаговыми. Метод Эйлера самый простой представитель пошаговых методов. Особенностью любого пошагового метода является то, что начиная со второго шага исходное значение в формуле (5) само является приближенным, то есть погрешность на каждом следующем шаге систематически возрастает. Наиболее используемым методом оценки точности пошаговых методов приближенного численного решения ОДУ является способ двойного прохождения заданного отрезка с шагом и с шагом

1.1 Усовершенствованный метод Эйлера

Основная идея этого метода: вычисляемое по формуле (5) очередное значение будет точнее, если значение производной, то есть угловой коэффициент прямой замещающей интегральную кривую на отрезке будет вычисляться не по левому краю (то есть в точке ), а по центру отрезка . Но так как значение производной между точками не вычисляется, то перейдем к сдвоенным участкам центром, в которых является точка , при этом уравнение прямой получает вид:

А формула (5) получает вид

Формула (7) применена только для , следовательно, значения по ней получить нельзя, поэтому находят по методу Эйлера, при этом для получения более точного результата поступают так: с начало по формуле (5) находят значение

(8)

В точке а затем находится по формуле (7) с шагом

(9)

После того как найдено дальнейшие вычисления при производится по формуле (7)

Численное решение дифференциальных уравнений

Многие задачи науки и техники сводятся к решению обыкновенных дифференциальных уравнений (ОДУ). ОДУ называются такие уравнения, которые содержат одну или несколько производных от искомой функции. В общем виде ОДУ можно записать следующим образом:

Где x – независимая переменная, - i-ая производная от искомой функции. n - порядок уравнения. Общее решение ОДУ n–го порядка содержит n произвольных постоянных , т.е. общее решение имеет вид .

Для выделения единственного решения необходимо задать n дополнительных условий. В зависимости от способа задания дополнительных условий существуют два различных типа задач: задача Коши и краевая задача. Если дополнительные условия задаются в одной точке, то такая задача называется задачей Коши. Дополнительные условия в задаче Коши называются начальными условиями. Если же дополнительные условия задаются в более чем одной точке, т.е. при различных значениях независимой переменной, то такая задача называется краевой. Сами дополнительные условия называются краевыми или граничными.

Ясно, что при n=1 можно говорить только о задачи Коши.

Примеры постановки задачи Коши :

Примеры краевых задач :

Решить такие задачи аналитически удается лишь для некоторых специальных типов уравнений.

Численные методы решения задачи Коши для ОДУ первого порядка

Постановка задачи . Найти решение ОДУ первого порядка

На отрезке при условии

При нахождении приближенного решения будем считать, что вычисления проводятся с расчетным шагом , расчетными узлами служат точки промежутка [x 0 , x n ].

Целью является построение таблицы

x i

x n

y i

y n

т.е. ищутся приближенные значения y в узлах сетки.

Интегрируя уравнение на отрезке , получим

Вполне естественным (но не единственным) путем получения численного решения является замена в нем интеграла какой–либо квадратурной формулой численного интегрирования. Если воспользоваться простейшей формулой левых прямоугольников первого порядка

,

то получим явную формулу Эйлера :

Порядок расчетов:

Зная , находим , затем т.д.

Геометрическая интерпретация метода Эйлера :

Пользуясь тем, что в точке x 0 известно решение y (x 0) = y 0 и значение его производной , можно записать уравнение касательной к графику искомой функции в точке :. При достаточно малом шаге h ордината этой касательной, полученная подстановкой в правую часть значения , должна мало отличаться от ординаты y (x 1) решенияy (x ) задачи Коши. Следовательно, точка пересечения касательной с прямой x = x 1 может быть приближенно принята за новую начальную точку. Через эту точку снова проведем прямую , которая приближенно отражает поведение касательной к в точке . Подставляя сюда (т.е. пересечение с прямой x = x 2), получим приближенное значение y (x ) в точке x 2: и т.д. В итоге для i –й точки получим формулу Эйлера.

Явный метод Эйлера имеет первый порядок точности или аппроксимации.

Если использовать формулу правых прямоугольников: , то придем к методу

Этот метод называют неявным методом Эйлера , поскольку для вычисления неизвестного значения по известному значению требуется решать уравнение, в общем случае нелинейное.

Неявный метод Эйлера имеет первый порядок точности или аппроксимации.

В данном методе вычисление состоит из двух этапов:

Данная схема называется еще методом предиктор – корректор (предсказывающее – исправляющее). На первом этапе приближенное значение предсказывается с невысокой точностью (h), а на втором этапе это предсказание исправляется, так что результирующее значение имеет второй порядок точности.

Методы Рунге – Кутта: идея построения явных методов Рунге–Кутты p –го порядка заключается в получении приближений к значениям y (x i +1) по формуле вида

…………………………………………….

Здесь a n , b nj , p n , – некоторые фиксированные числа (параметры).

При построения методов Рунге–Кутты параметры функции (a n , b nj , p n ) подбирают таким образом, чтобы получить нужный порядок аппроксимации.

Схема Рунге – Кутта четвертого порядка точности :

Пример . Решить задачу Коши:

Рассмотреть три метода: явный метод Эйлера, модифицированный метод Эйлера, метод Рунге – Кутта.

Точное решение:

Расчетные формулы по явному методу Эйлера для данного примера:

Расчетные формулы модифицированного метода Эйлера:

Расчетные формулы метода Рунге – Кутта:

y1 – метод Эйлера, y2 – модифицированный метод Эйлера, y3 – метод Рунге Кутта.

Видно, что самым точным является метод Рунге – Кутта.

Численные методы решения систем ОДУ первого порядка

Рассмотренные методы могут быть использованы также для решения систем дифференциальных уравнений первого порядка.

Покажем это для случая системы двух уравнений первого порядка:

Явный метод Эйлера:

Модифицированный метод Эйлера:

Схема Рунге – Кутта четвертого порядка точности:

К решению систем уравнений ОДУ сводятся также задачи Коши для уравнений высших порядков. Например, рассмотрим задачу Коши для уравнения второго порядка

Введем вторую неизвестную функцию . Тогда задача Коши заменяется следующей:

Т.е. в терминах предыдущей задачи: .

Пример. Найти решение задачи Коши :

На отрезке .

Точное решение:

Действительно:

Решим задачу явным методом Эйлера, модифицированным методом Эйлера и Рунге – Кутта с шагом h=0.2.

Введем функцию .

Тогда получим следующую задачу Коши для системы двух ОДУ первого порядка:

Явный метод Эйлера:

Модифицированный метод Эйлера:

Метод Рунге – Кутта:

Схема Эйлера:

Модифицированный метод Эйлера:

Схема Рунге - Кутта:

Max(y-y теор)=4*10 -5

Метод конечных разностей решения краевых задач для ОДУ

Постановка задачи : найти решение линейного дифференциального уравнения

удовлетворяющего краевым условиям:. (2)

Теорема. Пусть . Тогда существует единственное решение поставленной задачи.

К данной задаче сводится, например, задача об определении прогибов балки, которая на концах опирается шарнирно.

Основные этапы метода конечных разностей:

1) область непрерывного изменения аргумента () заменяется дискретным множеством точек, называемых узлами: .

2) Искомая функция непрерывного аргумента x, приближенно заменяется функцией дискретного аргумента на заданной сетке, т.е. . Функция называется сеточной.

3) Исходное дифференциальное уравнение заменяется разностным уравнением относительно сеточной функции. Такая замена называется разностной аппроксимацией.

Таким образом, решение дифференциального уравнения сводится к отысканию значений сеточной функции в узлах сетки, которые находятся из решения алгебраических уравнений.

Аппроксимация производных.

Для аппроксимации (замены) первой производной можно воспользоваться формулами:

- правая разностная производная,

- левая разностная производная,

Центральная разностная производная.

т.е., возможно множество способов аппроксимации производной.

Все эти определения следуют из понятия производной как предела: .

Опираясь на разностную аппроксимацию первой производной можно построить разностную аппроксимацию второй производной:

Аналогично можно получить аппроксимации производных более высокого порядка.

Определение. Погрешностью аппроксимации n- ой производной называется разность: .

Для определения порядка аппроксимации используется разложение в ряд Тейлора.

Рассмотрим правую разностную аппроксимацию первой производной:

Т.е. правая разностная производная имеет первый по h порядок аппроксимации.

Аналогично и для левой разностной производной.

Центральная разностная производная имеет второй порядок аппроксимации .

Аппроксимация второй производной по формуле (3) также имеет второй порядок аппроксимации.

Для того чтобы аппроксимировать дифференциальное уравнение необходимо в нем заменить все производные их аппроксимациями. Рассмотрим задачу (1), (2) и заменим в(1) производные:

В результате получим:

(4)

Порядок аппроксимации исходной задачи равен 2, т.к. вторая и первая производные заменены с порядком 2, а остальные – точно.

Итак, вместо дифференциальных уравнений (1), (2) получена система линейных уравнений для определения в узлах сетки.

Схему можно представить в виде:

т.е., получили систему линейных уравнений с матрицей:

Данная матрица является трехдиагональной, т.е. все элементы, которые расположены не на главной диагонали и двух прилегающих к ней диагоналях равны нулю.

Решая полученную систему уравнений, мы получим решение исходной задачи.

Дифференциальные уравнения - это уравнения, в которые неизвестная функция входит под знаком производной. Основная задача теории дифференциальных уравнений -- изучение функций, являющихся решениями таких уравнений.

Дифференциальные уравнения можно разделить на обыкновенные дифференциальные уравнения, в которых неизвестные функции являются функциями одной переменной, и на дифференциальные уравнения в частных производных, в которых неизвестные функции являются функциями двух и большего числа переменных.

Теория дифференциальных уравнений в частных производных более сложная и рассматривается в более полных или специальных курсах математики.

Изучение дифференциальных уравнений начнем с наиболее простого уравнения--уравнения первого порядка.

Уравнение вида

F(x,y,y") = 0,(1)

где х -- независимая переменная; у -- искомая функция; у" -- ее производная, называется дифференциальным уравнением первого порядка.

Если уравнение (1) можно разрешить относительно у", то оно принимает вид

и называется уравнением первого порядка, разрешенным относительно производной.

В некоторых случаях уравнение (2) удобно записать в виде f (х, у) dх - dy = 0, являющемся частным случаем более общего уравнения

P(x,y)dx+Q(x,y)dy=O,(3)

где Р(х,у) и Q(х,у) -- известные функции. Уравнение в симметричной форме (3) удобно тем, что переменные х и у в нем равноправны, т. е. каждую из них можно рассматривать как функцию другой.

Дадим два основных определения общего и частного решения уравнения.

Общим решением уравнения (2) в некоторой области G плоскости Оху называется функция у=ц(х,С), зависящая от х и произвольной постоянной С, если она является решением уравнения (2) при любом значении постоянной С, и если при любых начальных условиях y x=x0 =y 0 таких, что (x 0 ;y 0)=G, существует единственное значение постоянной С = С 0 такое, что функция у=ц(х,С 0) удовлетворяет данным начальным условиям у=ц(х 0 ,С).

Частным решением уравнения (2) в области G называется функция у=ц(х,С 0), которая получается из общего решения у=ц(х,С) при определенном значении постоянной С=С 0 .

Геометрически общее решение у=ц(х,С) представляет собой семейство интегральных кривых на плоскости Оху, зависящее от одной произвольной постоянной С, а частное решение у=ц(х,С 0) -- одну интегральную кривую этого семейства, проходящую через заданную точку (х 0 ; у 0).

Приближенное решение дифференциальных уравнений первого порядка методом Эйлера. Суть этого метода состоит в том, что искомая интегральная кривая, являющаяся графиком частного решения, приближенно заменяется ломаной. Пусть даны дифференциальное уравнение

и начальные условия y |x=x0 =y 0 .

Найдем приближенно решение уравнения на отрезке [х 0 ,b], удовлетворяющее заданным начальным условиям.

Разобьем отрезок [х 0 ,b] точками х 0 <х 1 ,<х 2 <...<х n =b на n равных частей. Пусть х 1 --х 0 =х 2 -- x 1 = ... =x n -- x n-1 = ?x. Обозначим через y i приближенные значения искомого решения в точках х i (i=1, 2, ..., n). Проведем через точки разбиения х i - прямые, параллельные оси Оу, и последовательно проделаем следующие однотипные операции.

Подставим значения х 0 и у 0 в правую часть уравнения y"=f(x,y) и вычислим угловой коэффициент y"=f(x 0 ,y 0) касательной к интегральной кривой в точке (х 0 ;у 0). Для нахождения приближенного значения у 1 искомого решения заменяем на отрезке [х 0 ,x 1 ,] интегральную кривую отрезком ее касательной в точке (х 0 ;у 0). При этом получаем

y 1 - y 0 =f(x 0 ;y 0)(x 1 - x 0),

откуда, так как х 0 , х 1 , у 0 известны, находим

y1 = y0+f(x0;y0)(x1 - x0).

Подставляя значения х 1 и y 1 , в правую часть уравнения y"=f(x,y), вычисляем угловой коэффициент y"=f(x 1 ,y 1) касательной к интегральной кривой в точке (х 1 ;y 1). Далее, заменяя на отрезке интегральную кривую отрезком касательной, находим приближенное значение решения у 2 в точке х 2:

y 2 = y 1 +f(x 1 ;y 1)(x 2 - x 1)

В этом равенстве известными являются х 1 , у 1 , х 2 , а у 2 выражается через них.

Аналогично находим

y 3 = y 2 +f(x 2 ;y 2) ?x, …, y n = y n-1 +f(x n-1 ;y n-1) ?x

Таким образом, приближенно построена искомая интегральная кривая в виде ломаной и получены приближенные значения y i искомого решения в точках х i . При этом значения у i вычисляются по формуле

y i = y i-1 +f(x i-1 ;y i-1) ?x (i=1,2, …, n).

Формула и является основной расчетной формулой метода Эйлера. Ее точность тем выше, чем меньше разность?x.

Метод Эйлера относиться к численным методам, дающим решение в виде таблицы приближенных значений искомой функции у(х). Он является сравнительно грубым и применяется в основном для ориентировочных расчетов. Однако идеи, положенные в основу метода Эйлера, являются исходными для ряда других методов.

Степень точности метода Эйлера, вообще говоря, невелика. Существуют гораздо более точные методы приближенного решения дифференциальных уравнений.